Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
In Silico Pharmacol ; 12(1): 35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680655

RESUMO

Dengue virus type 2 (DENV-2) is an arthropod-borne deadly RNA human pathogen transmitted through the mosquito Aedes. The DENV-2 roots viral infection by facilitating entry with its envelope glycoprotein to the receptor protein Dendritic-cell-specific ICAM3-grabbing non-integrin (DC-SIGN) through membrane fusion. Here, an organizational path is reported for inhibiting the transition due to fusion activation and by blocking the residues of the DC-SIGN-E-Glyco protein complex through citrus limonoids with its antiviral effect. Based on lower binding affinity obtained with E-glycoprotein, and based on ADMET and drug-likeness study, limonin was selected as having effective interaction with DC-SIGN-E-glycoprotein complex in comparison to other citrus limonoids. The FTIR spectra performed with the limonin-E-glycoprotein sample provide evidence of hydrogen bond formation that indicates the formation of a strong limonin-E-glycoprotein conjugate. Further, the strong physical interaction between DC-SIGN and small limonin molecules in comparison to that of E-glyco with DC-SIGN assures the development of immunity against DENV-2. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00207-2.

2.
Pathogens ; 13(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668261

RESUMO

In pathogen recognition, the nucleotide-binding domain (NBD) and leucine rich repeat receptors (NLRs) have noteworthy functions in the activation of the innate immune response. These receptors respond to several viral infections, among them NOD2, a very dynamic NLR, whose role in dengue virus (DENV) infection remains unclear. This research aimed to determine the role of human NOD2 in THP-1 macrophage-like cells during DENV-2 infection. NOD2 levels in DENV-2 infected THP-1 macrophage-like cells was evaluated by RT-PCR and Western blot, and an increase was observed at both mRNA and protein levels. We observed using confocal microscopy and co-immunoprecipitation assays that NOD2 interacts with the effector protein MAVS (mitochondrial antiviral signaling protein), an adaptor protein promoting antiviral activity, this occurring mainly at 12 h into the infection. After silencing NOD2, we detected increased viral loads of DENV-2 and lower levels of IFN-α in supernatants from THP-1 macrophage-like cells with NOD2 knock-down and further infected with DENV-2, compared with mock-control or cells transfected with Scramble-siRNA. Thus, NOD2 is activated in response to DENV-2 in THP-1 macrophage-like cells and participates in IFN-α production, in addition to limiting virus replication at the examined time points.

3.
Viruses ; 16(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675868

RESUMO

E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.


Assuntos
Aedes , Vírus da Dengue , Técnicas de Inativação de Genes , Replicação Viral , Animais , Replicação Viral/genética , Aedes/virologia , Aedes/genética , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Sistemas CRISPR-Cas , Dengue/virologia
4.
Arch Microbiol ; 206(4): 162, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483579

RESUMO

Dengue virus, particularly serotype 2 (DENV-2), poses a significant global health threat, and understanding the molecular basis of its interactions with host cell proteins is imperative for developing targeted therapeutic strategies. This study elucidated the interactions between proline-enriched motifs and Src homology 3 (SH3) domain. The SH3 domain is pivotal in mediating protein-protein interactions, particularly by recognizing and binding to proline-rich regions in partner proteins. Through a computational pipeline, we analyzed the interactions and binding modes of proline-enriched motifs with SH3 domains, identified new potential DENV-2 interactions with the SH3 domain, and revealed potential hot spot residues, underscoring their significance in the viral life cycle. This comprehensive analysis provides crucial insights into the molecular basis of DENV-2 infection, highlighting conserved and serotype-specific interactions. The identified hot spot residues offer potential targets for therapeutic intervention, laying the foundation for developing antiviral strategies against Dengue virus infection. These findings contribute to the broader understanding of viral-host interactions and provide a roadmap for future research on Dengue virus pathogenesis and treatment.


Assuntos
Interações entre Hospedeiro e Microrganismos , Domínios de Homologia de src , Ligação Proteica , Sequência de Bases , Prolina/metabolismo
5.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334186

RESUMO

The dengue virus (DENV) infects approximately 400 million people annually worldwide causing significant morbidity and mortality. Despite advances in understanding the virus life cycle and infectivity, no specific treatment for this disease exists due to the lack of therapeutic drugs. In addition, vaccines available currently are ineffective with severe side effects. Therefore, there is an urgent need for developing therapeutics suitable for effective management of DENV infection. In this study, we adopted a drug repurposing strategy to identify new therapeutic use of existing FDA approved drug molecules to target DENV2 non-structural proteins NS3 and NS5 using computational approaches. We used Drugbank database molecules for virtual screening and multiple docking analysis against a total of four domains, the NS3 protease and helicase domains and NS5 MTase and RdRp domains. Subsequently, MD simulations and MM-PBSA analysis were performed to validate the intrinsic atomic interactions and the binding affinities. Furthermore, the internal dynamics in all four protein domains, in presence of drug molecule binding were assessed using essential dynamics and free energy landscape analyses, which were further coupled with conformational dynamics-based clustering studies and cross-correlation analysis to map the regions that exhibit these structural variations. Our comprehensive analysis identified tolcapone, cefprozil, delavirdine and indinavir as potential inhibitors of NS5 MTase, NS5 RdRp, NS3 protease and NS3 helicase functions, respectively. These high-confidence candidate molecules will be useful for developing effective anti-DENV therapy to combat dengue infection.Communicated by Ramaswamy H. Sarma.

6.
Biomedicines ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38255195

RESUMO

GNBPB6, a beta-1,3-glucan-binding protein, was identified in the transcriptome of Aedes aegypti (A. aegypti) with dengue (DENV), Zika (ZIKV), and chikungunya viruses (CHIKV). In this study, we not only clarified that DENV2 and ZIKV regulate the changes in GNBPB6 expression but also identified the relationship of this gene with viral infections. The changes in GNBPB6 expression were quantified and showed a decrease in A. aegypti cells (Aag2 cells) at 2 dpi and 3 dpi and an increase at 4 dpi and 5 dpi (p < 0.05). A significant increase was observed only at 5 dpi after DENV2 infection. Subsequently, a GNBPB6 knockout (KO) cell line was constructed using the CRISPR/Cas9 system, and the DENV2 and ZIKV RNA copies, along with cell densities, were quantified and compared between the KO and wild type (WT) cells at different dpi. The result showed that DENV2 and ZIKV RNA copies were significantly increased in the KO cell line with no significant change in cell growth. Finally, DENV2 copies decreased after GNBPB6 was complemented in the KO. In conclusion, GNBPB6 knockout and complementation in Aag2 cells revealed that GNBPB6 can inhibit the replication of both DENV2 and ZIKV. These results contribute to subsequent research on mosquito-virus interactions.

7.
Heliyon ; 10(2): e24202, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293469

RESUMO

A series of new imidazole-phenazine derivatives were synthesized via a two-step process. The condensation of 2,3-diaminophenazine and benzaldehyde derivatives proceeds with intermediate formation of an aniline Schiff base, which undergoes subsequent cyclodehydrogenation in situ. The structures of the synthesized compounds were characterized by 1D and 2D NMR, FTIR and HRMS. A total of thirteen imidazole phenazine derivatives were synthesized and validated for their inhibitory activity as anti-dengue agents by an in vitro DENV2 NS2B-NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Two para-substituted imidazole phenazines, 3e and 3k, were found to be promising lead molecules for novel NS2B-NS3 protease inhibitors with IC50 of 54.8 µM and 71.9 µM, respectively, compared to quercetin as a control (IC50 104.8 µM). The in silico study was performed using AutoDock Vina to identify the binding energy and conformation of 3e and 3k with the active site of the DENV2 NS2B-NS3 protease Wichapong model. The results indicate better binding properties of 3e and 3k with calculated binding energies of -8.5 and -8.4 kcal mol-1, respectively, compared to the binding energy of quercetin of -7.2 kcal mol-1, which corroborates well with the experimental observations.

8.
Emerg Infect Dis ; 30(1): 189-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086397

RESUMO

Using Oxford Nanopore technologies and phylogenetic analyses, we sequenced and identified the cosmopolitan genotype of dengue virus serotype 2 isolated from 2 patients in the city of Villavicencio, Meta department, Colombia. This identification suggests the emergence of this genotype in the country, which warrants further surveillance to identify its epidemic potential.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/epidemiologia , Sorogrupo , Filogenia , Colômbia/epidemiologia , Genótipo
9.
J Med Virol ; 95(11): e29255, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009688

RESUMO

In 2022, a large dengue outbreak was reported in Vietnam, where dengue was endemic. A total of 1889 acute-phase serum samples were collected from patients with suspected dengue at Vung Tau General Hospital, the core hospital in Vung Tau Province, southern Vietnam. Among the 1889 samples analyzed for laboratory confirmation of dengue virus (DENV) infection, 339 positive cases were identified, of which 130 were primary infections and 209 were secondary infections. DENV-2 was the dominant serotype in both primary and secondary infection groups. Phylogenetic analysis based on sequences of the envelope protein-coding region revealed the emergence of a new DENV-2 lineage during this outbreak.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Filogenia , Vietnã/epidemiologia , Genótipo , Surtos de Doenças , Sorogrupo
10.
Front Pharmacol ; 14: 1159377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954851

RESUMO

In September 2022, Panchkula Civil Hospital reported an outbreak of acute febrile illness (AFI) in Pinjore, located in the Himalayan foothills, Haryana, North India. There was an upsurge of fever cases. Blood samples were taken from suspected patients (n = 58) with AFI and subjected to serology of dengue, chikungunya, Japanese encephalitis, leptospira and scrub typhus. The samples were also screened for West Nile & Zika virus RNA using real-time PCR. Viral strains were characterized by sequencing. Of the 58 cases of AFI, Dengue could be identified in 45 (77.58%) followed by JE and Chikungunya in 2 cases each (3.44%), respectively. Among Dengue positive cases, 44 had monoinfection (97.77%) and 1 patient had dengue and JE. None were positive for Zika, West Nile, Scrub typhus, and Leptospira with the testing protocol. Four patients developed dengue with warning signs, such as abdominal pain in one patient and recurrent vomiting in the remaining three. The dengue serotype could be determined in 17 samples and revealed serotype 2. Molecular evolution analysis based on the complete envelope gene revealed that all DENV-2 strains (n = 13) circulated in the outbreak area belonged to the DENV-2 cosmopoliton genotype. In the early stages of infection, relying only on clinical manifestations is ineffective, so both molecular and serological assays along with clinical diagnosis are noteworthy for determining the aetiology of AFI.

11.
Eur J Med Res ; 28(1): 482, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932817

RESUMO

BACKGROUND: Dengue virus serotype 2 (DENV-2) was the major serotype in the 2015 dengue outbreak in Taiwan, while DENV-1 and DENV-3 were dominant between 2005 and 2014. We aimed to investigate whether DENV-2 contributed to disease severity and mortality in the outbreak in Kaohsiung city, Taiwan. METHODS: We collected serum samples from dengue patients to detect the presence of DENV and determine the serotypes by using quantitative reverse transcription-polymerase chain reaction. Our cohorts comprised 105 DENV-1-infected cases and 1,550 DENV-2-infected cases. Demographic data, DENV serotype, and comorbidities were covariates for univariate and multivariate analyses to explore the association with severity and mortality. RESULTS: The results suggested that DENV-1 persisted and circulated, while DENV-2 was dominant during the dengue outbreak that occurred between September and December 2015. However, DENV-2 did not directly contribute to either severity or mortality. Aged patients and patients with diabetes mellitus (DM) or moderate to severe chronic kidney disease (CKD) had a higher risk of developing severe dengue. The mortality of dengue patients was related to a higher Charlson comorbidity index score and severe dengue. Among DENV-2-infected patients and older patients, preexisting anti-dengue IgG, DM, and moderate to severe CKD were associated with severe dengue. Moreover, female sex and severe dengue were associated with a significantly higher risk of death. CONCLUSIONS: Our findings highlight the importance of timely serological testing in elderly patients to identify potential secondary infections and focus on the meticulous management of elderly patients with DM or moderate to severe CKD to reduce dengue-related death.


Assuntos
Vírus da Dengue , Dengue , Insuficiência Renal Crônica , Dengue Grave , Idoso , Humanos , Feminino , Sorogrupo , Dengue/diagnóstico , Dengue/epidemiologia , Dengue Grave/epidemiologia , Taiwan/epidemiologia , Surtos de Doenças , Insuficiência Renal Crônica/epidemiologia
12.
Virol J ; 20(1): 231, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821951

RESUMO

The global incidence of dengue fever has gradually increased in recent years, posing a serious threat to human health. In the absence of specific anti-dengue drugs, understanding the interaction of Dengue virus (DENV) with the host is essential for the development of effective therapeutic measures. Autophagy is often activated during DENV infection to promote viral replication, but the mechanism of how DENV's own proteins induce autophagy has not been clarified. In this study, we first preliminarily identified DENV-2 NS1 as the most likely viral protein for DENV-2-induced autophagy with the help of molecular docking techniques. Further experimental results confirmed that DENV-2 NS1 regulates DENV-2 infection of HUVEC-induced autophagy through the AMPK/ERK/mTOR signaling pathway. Mechanistically, DENV-2 NS1 mainly interacted with AMPK by means of its Wing structural domain, and NS1 bound to all three structural domains on the AMPKα subunit. Finally, the experimental results showed that DENV-2 NS1 promoted the interaction between LKB1 and AMPKα1 and thus activated AMPK by both increasing the expression of LKB1 and binding LKB1. In conclusion, the results of this study revealed that DENV-2 NS1 protein served as a platform for the interaction between AMPK and LKB1 after DENV-2 infection with HUVEC, and pulled AMPK and LKB1 together to form a complex. LKB1 to form a complex, promoting LKB1 action on the kinase structural domain of AMPKα1, which in turn promotes phosphorylation of the Thr172 site on the AMPK kinase structural domain and activates AMPK, thereby positively regulating the AMPK/ERK/mTOR signaling pathway and inducing autophagy. The present discovery improves our understanding of DENV-2-induced host autophagy and contributes to the development of anti-dengue drugs.


Assuntos
Vírus da Dengue , Dengue , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Vírus da Dengue/fisiologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas não Estruturais Virais/metabolismo
13.
J Biomol Struct Dyn ; : 1-29, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517062

RESUMO

DENV-2 strain is the most fatal and infectious of the five dengue virus serotypes. The non-structural protein NS1 encoded by its genome is the most significant protein required for viral pathogenesis and replication inside the host body. Thus, targeting the NS1 protein and designing an inhibitor to limit its stability and secretion is a propitious attempt in our fight against dengue. Four novel inhibitors are designed to target the conserved cysteine residues (C55, C313, C316, and C329) and glycosylation sites (N130 and N207) of the NS1 protein in an attempt to halt the spread of the dengue infection in the host body altogether. Numerous computer-aided drug designing techniques including molecular docking, molecular dynamics simulation, virtual screening, principal component analysis, and dynamic cross-correlation matrix were employed to determine the structural and functional activity of the NS1-inhibitor complexes. From our analysis, it was evident that the extent of structural and atomic level fluctuations of the ligand-bound protein exhibited a declining trend in contrast to unbound protein which was prominently noticeable through the RMSD, RMSF, Rg, and SASA graphs. The ADMET analysis of the four ligands revealed a promising pharmacokinetics and pharmacodynamic profile, along with good bioavailability and toxicity properties. The proposed drugs when bound to the targeted cavities resulted in stable conformations in comparison to their unbound state, implying they have good affinity promising effective drug action. Thus, they can be tested in vitro and used as potential anti-dengue drugs.Communicated by Ramaswamy H. Sarma.

14.
Microorganisms ; 11(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37317240

RESUMO

Dengue virus (DENV), which has circulated in Vietnam for several decades, has multiple serotypes and genotypes. A 2019 dengue outbreak resulted in a larger number of cases than any other outbreak. We conducted a molecular characterization using samples collected in 2019-2020 from dengue patients in Hanoi and nearby cities located in northern Vietnam. The circulating serotypes were DENV-1 (25%, n = 22) and DENV-2 (73%, n = 64). Phylogenetic analyses revealed that all DENV-1 (n = 13) were genotype I and clustered to local strains circulating during the previous outbreak in the 2017, whereas DENV-2 consisted of two genotypes: Asian-I (n = 5), related to local strains from 2006-2022, and cosmopolitan (n = 18), the predominant genotype in this epidemic. The current cosmopolitan virus was identified as having an Asian-Pacific lineage. The virus was closely related to strains in other recent outbreaks in Southeast Asian countries and China. Multiple introductions occurred in 2016-2017, which were possibly from maritime Southeast Asia (Indonesia, Singapore, and Malaysia), mainland Southeast Asia (Cambodia and Thailand), or China, rather than from an expansion of localized Vietnamese cosmopolitan strains that were previously detected in the 2000s. We also analyzed the genetic relationship between Vietnam's cosmopolitan strain and recent global strains reported from Asia, Oceania, Africa, and South America. This analysis revealed that viruses of Asian-Pacific lineage are not restricted to Asia but have spread to Peru and Brazil in South America.

15.
Infect Dis Poverty ; 12(1): 48, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161462

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat, with Aedes albopictus being the confirmed vector responsible for dengue epidemics in Guangzhou, China. Mosquito densoviruses (MDVs) are pathogenic mosquito-specific viruses, and a novel MDV was previously isolated from Ae. albopictus in Guangzhou. This study aims to determine the prevalence of MDVs in wild Ae. albopictus populations and investigate their potential interactions with DENV and impact on vector susceptibility for DENV. METHODS: The prevalence of MDV in wild mosquitoes in China was investigated using open access sequencing data and PCR detection in Ae. albopictus in Guangzhou. The viral infection rate and titers in MDV-persistent C6/36 cells were evaluated at 12, 24, 48, 72, 96, and 120 h post infection (hpi) by indirect immunofluorescence assay (IFA) and real time quantitative PCR (RT-qPCR). The midgut infection rate (MIR), dissemination rate (DR), and salivary gland infection rate (SGIR) in various tissues of MDV-infected mosquitoes were detected and quantified at 0, 5, 10, and 15 days post infection (dpi) by RT-PCR and RT-qPCR. The chi-square test evaluated dengue virus serotype 2 (DENV-2) and Aedes aegypti densovirus (AaeDV) infection rates and related indices in mosquitoes, while Tukey's LSD and t-tests compared viral titers in C6/36 cells and tissues over time. RESULTS: The results revealed a relatively wide distribution of MDVs in Aedes, Culex, and Anopheles mosquitoes in China and an over 68% positive rate. In vitro, significant reductions in DENV-2 titers in supernatant at 120 hpi, and an apparent decrease in DENV-2-positive cells at 96 and 120 hpi were observed. In vivo, DENV-2 in the ovaries and salivary glands was first detected at 10 dpi in both monoinfected and superinfected Ae. albopictus females, while MDV superinfection with DENV-2 suppressed the salivary gland infection rate at 15 dpi. DENV-2 titer in the ovary and salivary glands of Ae. albopictus was reduced in superinfected mosquitoes at 15 dpi. CONCLUSIONS: MDVs is widespread in natural mosquito populations, and replication of DENV-2 is suppressed in MDV-infected Ae. albopictus, thus reducing vector susceptibility to DENV-2. Our study supports the hypothesis that MDVs may contribute to reducing transmission of DENV and provides an alternative strategy for mosquito-transmitted disease control.


Assuntos
Aedes , Vírus da Dengue , Densovirinae , Densovirus , Feminino , Animais , Densovirus/genética , Sorogrupo , Mosquitos Vetores
16.
Braz J Microbiol ; 54(3): 1411-1419, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178262

RESUMO

The genetic diversity of the dengue virus is characterized by four circulating serotypes, several genotypes, and an increasing number of existing lineages that may have differences in the potential to cause epidemics and disease severity. Accurate identification of the genetic variability of the virus is essential to identify lineages responsible for an epidemic and understanding the processes of virus spread and virulence. Here, we characterize, using portable nanopore genomic sequencing, different lineages of dengue virus 2 (DENV-2) detected in 22 serum samples from patients with and without dengue warning signs attended at Hospital de Base of São José do Rio Preto (SJRP) in 2019, during a DENV-2 outbreak. Demographic, epidemiological, and clinical data were also analyzed. The phylogenetic reconstruction and the clinical data showed that two lineages belonging to the American/Asian genotype of DENV-2-BR3 and BR4 (BR4L1 and BR4L2)-were co-circulating in SJRP. Although preliminary, these results indicate no specific association between clinical form and phylogenetic clustering at the virus consensus sequence level. Studies with larger sample sizes and which explore single nucleotide variants are needed. Therefore, we showed that portable nanopore genome sequencing could generate quick and reliable sequences for genomic surveillance to monitor viral diversity and its association with disease severity as an epidemic unfolds.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Filogenia , Sequência de Bases , Surtos de Doenças , Sorogrupo , Genótipo , Variação Genética
17.
Parasit Vectors ; 16(1): 166, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208697

RESUMO

BACKGROUND: Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS: In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS: Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS: The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.


Assuntos
Aedes , Vírus da Dengue , Dengue , Microbiota , Animais , Vírus da Dengue/genética , Aedes/fisiologia , Mosquitos Vetores/fisiologia
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(1): 29-38, 2023 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-36856207

RESUMO

OBJECTIVE: To analyze the differentially phosphorylated proteins in DENV-2-infected human umbilical venous endothelial cells (HUVECs) and explore the possible pathogenic mechanism of DENV-2 infection. METHODS: The total proteins were extracted from DENV-2-infected HUVECs and blank control HUVEC using SDT lysis method. The phosphorylated proteins were qualitatively and quantitatively analyzed using tandem mass spectrometry (TMT). The identified differentially phosphorylated proteins were analyzed by bioinformatics analyses such as subcellular localization analysis, GO enrichment analysis, KEGG pathway analysis and protein-protein interaction (PPI) analysis. Western blotting was used to detect the expressions of phosphorylated Jun, map2k2 and AKT1 proteins in DENV-2-infected HUVECs. RESULTS: A total of 2918 modified peptides on 1385 different proteins were detected, and among them 1346 were significantly upregulated (FC > 1.2, P < 0.05) and 1572 were significantly downregulated (FC < 0.83, P < 0.05). A total of 49 phosphorylated conserved motifs were obtained by amino acid conservative motif analysis. The most abundant differentially phosphorylated peptides in protein domain analysis included RNA recognition motif, protein kinase domain and PH domain. Subcellular localization analysis showed that the differentially modified peptides were mainly localized in the nucleus and cytoplasm. GO enrichment and KEGG pathway analysis showed that the differential peptides were mainly enriched in the regulation of stimulation response, biosynthesis of small molecules containing nuclear bases, and migration of phagosomes and leukocytes across the endothelium. PPI and KEGG joint analysis showed that the up-regulated and down-regulated differentially phosphorylated proteins were enriched in 15 pathways. In DENV-2-infected HUVECs, Western blotting detected differential expressions of phosphorylated proteins related with the autophagy pathway, namely JUN, MAP2K2 and AKT1, and among them p-JUN was significantly down-regulated and p-AKT1 and p-MAP2K2 were significantly upregulated (P < 0.01). CONCLUSION: DENV-2 infected HUVECs show numerous differentially expressed proteins. The downregulation of p-JUN and upregulation of p-MAP2K2 and p-AKT1 suggest their potential roles in regulating autophagy, which is probably involved in the mechanism of DENV-2 infection.


Assuntos
Autofagia , Dengue , Células Endoteliais da Veia Umbilical Humana , Proteoma , Humanos , Morte Celular , Núcleo Celular , Células Endoteliais da Veia Umbilical Humana/virologia
19.
Pharmaceutics ; 15(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36986663

RESUMO

Arboviruses such as Dengue, yellow fever, West Nile, and Zika are flaviviruses vector-borne RNA viruses transmitted biologically among vertebrate hosts by blood-taking vectors. Many flaviviruses are associated with neurological, viscerotropic, and hemorrhagic diseases, posing significant health and socioeconomic concerns as they adapt to new environments. Licensed drugs against them are currently unavailable, so searching for effective antiviral molecules is still necessary. Epigallocatechin molecules, a green tea polyphenol, have shown great virucidal potential against flaviviruses, including DENV, WNV, and ZIKV. The interaction of EGCG with the viral envelope protein and viral protease, mainly identified by computational studies, describes the interaction of these molecules with viral proteins; however, how the viral NS2B/NS3 protease interacts with epigallocatechin molecules is not yet fully deciphered. Consequently, we tested the antiviral potential of two epigallocatechin molecules (EGC and EGCG) and their derivative (AcEGCG) against DENV, YFV, WNV, and ZIKV NS2B/NS3 protease. Thus, we assayed the effect of the molecules and found that a mixture of the molecules EGC (competitive) and EGCG (noncompetitive) inhibited the virus protease of YFV, WNV, and ZIKV more effectively with IC50 values of 1.17 ± 0.2 µM, 0.58 ± 0.07 µM, and 0.57 ± 0.05 µM, respectively. As these molecules fundamentally differ in their inhibitory mode and chemical structure, our finding may open a new line for developing more effective allosteric/active site inhibitors to combat flaviviruses infection.

20.
Bioorg Med Chem Lett ; 83: 129174, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764470

RESUMO

Drug repurposing approach was applied to find a potent antiviral agent against RNA viruses such as SARS-CoV-2, influenza viruses and dengue virus with a concise strategy of small change in parent molecular structure. For this purpose, ß-D-N4-hydroxycytidine (NHC, 1) with a broad spectrum of antiviral activity was chosen as the parent molecule. Among the prepared NHC analogs (8a-g, and 9) from uridine, ß-D-N4-O-isobutyrylcytidine (8a) showed potent activity against SARS-CoV-2 (EC50 3.50 µM), Flu A (H1N1) (EC50 5.80 µM), Flu A (H3N2) (EC50 7.30 µM), Flu B (EC50 3.40 µM) and DENV-2 (EC50 3.95 µM) in vitro. Furthermore, its potency against SARS-CoV-2 was >5-fold, 3.4-fold, and 3-fold compared to that of NHC (1), MK-4482 (2), and remdesivir (RDV) in vitro, respectively. Ultimately, compound 8a was expected to be a potent inhibitor toward RNA viruses as a viral mutagenic agent like MK-4482.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2 , Vírus da Influenza A Subtipo H3N2 , Replicação Viral , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...